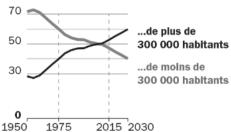

Séminaire International sur les Transports et la Recherche en Afrique Sub-Saharienne - SITRASS 10

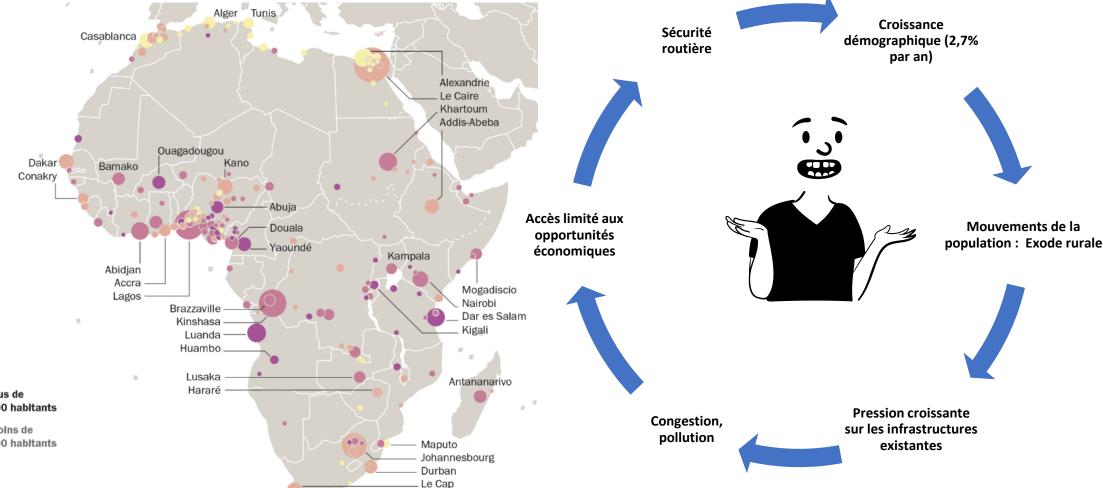
SYSTEMES DE TRACTION DES ACTUELLES ET FUTURES LIGNES DE TRANSPORT FERROVIAIRE ET URBAIN EN AFRIQUE : QUEL CHOIX TECHNOLOGIQUE ENTRE TRACTION THERMIQUE, ELECTRIQUE, BIMODE OU HYBRIDE ?

Crédo POCANAM


Ingénieur, expert international en systèmes de transports ferroviaires et urbains

Introduction





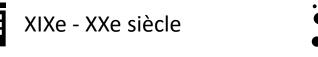
Taux de croissance annuel entre 1975 et 2015 (en %)

9 5,5 3,8 2,5 0,7

Part de la population urbaine vivant dans les villes... (en %)

Source: Nations Unies, 2015

Histoire & Etat des lieux

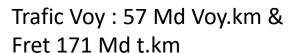


194136 Inde Chine Brezil Afrique Portugal Allemagne Sources: UIC, 2016

Source: Bullot, 2023

Sources: UIC, 2016

Alexandrie et Le Caire en 1856

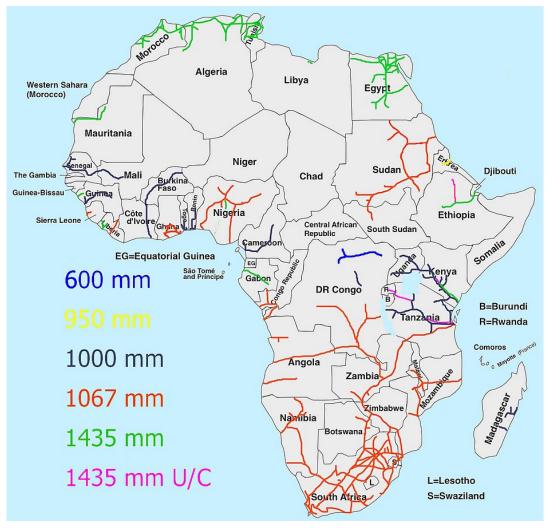


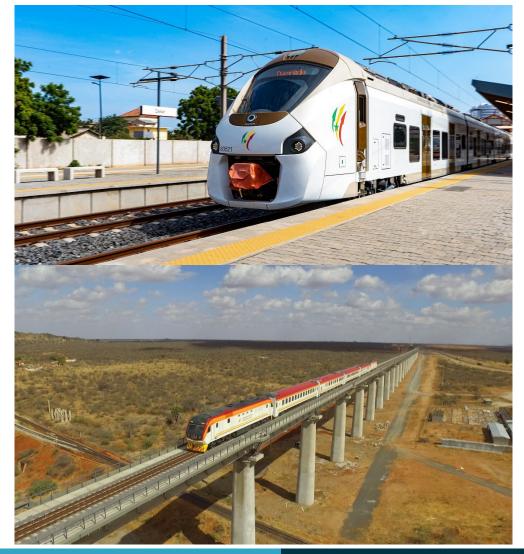
Densité 2,5 km/1000 km² vs 23,1 mondiale Ecartement, SIG, énergie, gabarit

1065, 1000, 1435 mm

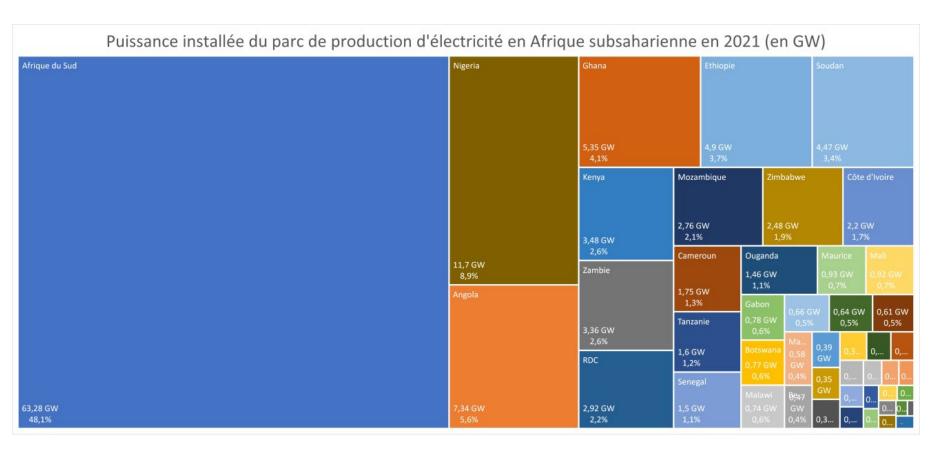
Thermique peu électrifiée

35 km/h


75000 – 90000 km



Histoire & Etat des lieux : focus écartements



Source: ENPC, 2024

Electrification en Afrique & ferroviaire

131,5 GW

22 % charbon, 39 % pétrole, 30 % gaz naturel, 9 % sources renouvelables


52 % < 90,4 %

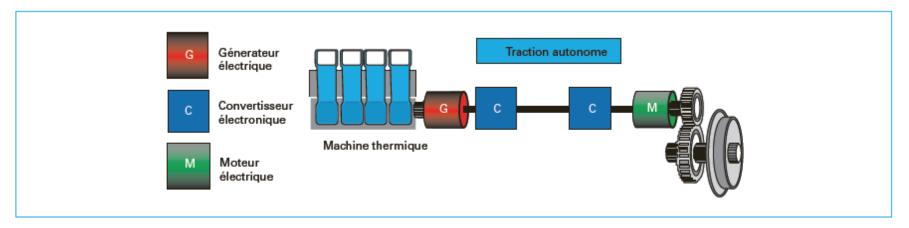
Source : Conférence des Nations Unies sur le commerce et de développement, 2021

Electrification en Afrique & ferroviaire

7,23 % → 15 % grâce aux projets récents

l'Afrique du Sud (50 % en 3 kV), l'Algérie, l'Ethiopie, Djibouti, le Maroc (LGV), le Sénégal, la Tunisie et le Zimbabwe

 La ligne Addis-Abeba – Djibouti d'une longueur de 750 km électrifiée à 25 kV CA en 2018

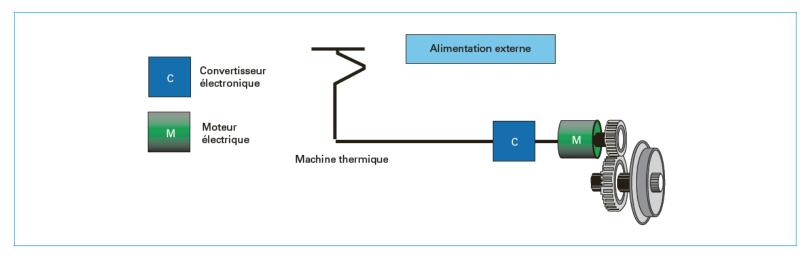


- Le Train Express Régional (TER) de Dakar, inauguré en 2021
- La ligne Dar Es Salaam Mwanza en Tanzanie en 2024
- Métro d'Abidjan en 2028

Technologies de traction ferroviaire Traction thermique

Source : Techniques de l'ingénieur, 2013

- ☐ CAPEX faible
- ☐ Autonomie indépendante de l'électricité
- ☐ Technologie éprouvée et maitrisée

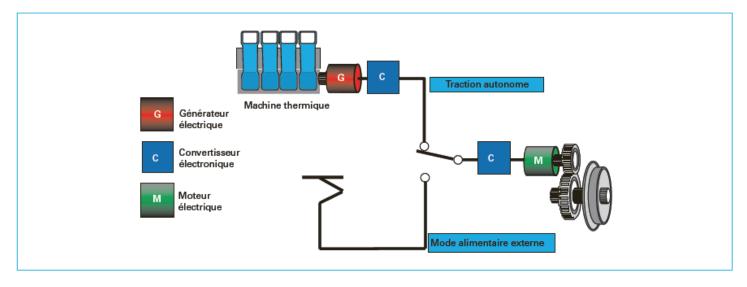


- ☐ Emission de GES
- ☐ Pollution avec particules fines
- ☐ Sensible au cours du baril de pétrole
- ☐ OPEX élevé

Technologies de traction ferroviaire Traction électrique

Source : Techniques de l'ingénieur, 2013

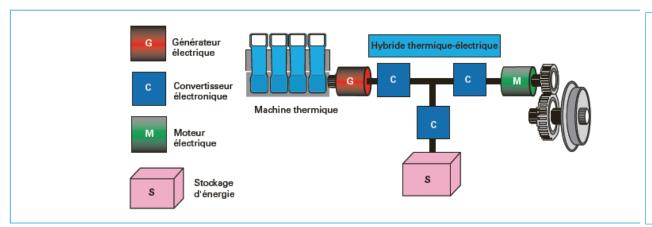
- ☐ Faible émission de GES avec utilisation des sources d'énergie renouvelable
- ☐ Rendement énergétique (moins de pertes)
- ☐ OPEX faible

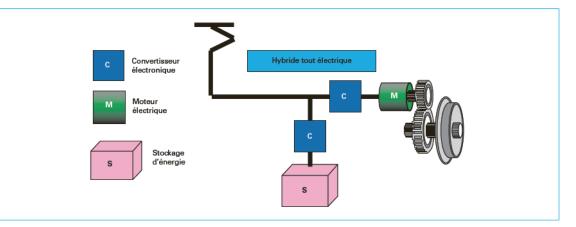


- ☐ CAPEX élevés (SST, caténaire)
- ☐ Nécessité d'avoir un réseau électrique fiable

Technologies de traction ferroviaire Traction bimode

Source : Techniques de l'ingénieur, 2013

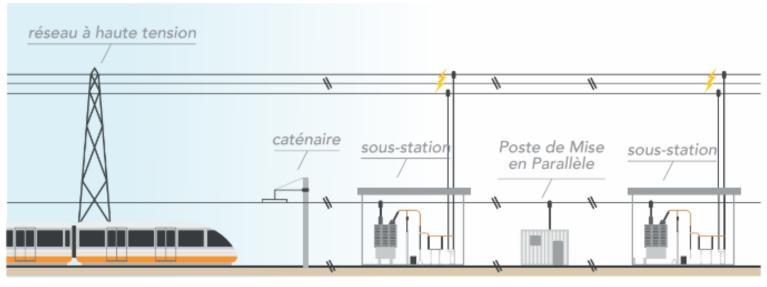

- ☐ Flexibilité en exploitation
- ☐ Reduction progressive de la dépendance aux énergies fossiles
- ☐ CAPEX réduits


- ☐ Complexité de l'intégration système
- ☐ OPEX élevés (Maintenance de 2 systèmes)

Technologies de traction ferroviaire Traction hybride

Source: Techniques de l'ingénieur, 2013

- ☐ Réduction significative des émissions de CO₂
- ☐ Faibles nuisances sonores
- ☐ Récupération de l'énergie de freinage



- Autonomie des batteries
- ☐ Recyclage des batteries
- ☐ Maintenance complexe

La FDMS et le Ferroviaire

Source : Dossier de concertation de la ligne PLCE, 2023

Fiabilité

Maintenabilité

Disponibilité

Sécurité

Analyse comparative

Critères / Modes de	Thermique (Diesel)	Électrique	Bimode	Hybride
traction				
Coût d'investissement initial	✓ Faible	Élevé (caténaire, sous-stations)	🛕 Moyen à élevé	Élevé (stockage + double système)
Coûts d'exploitation	Élevés (carburant + maintenance)	✓ Faibles		Réduits (énergie récupérée, moins de diesel)
Autonomie / Continuité de service	✓ Très bonne	X Dépendante du réseau électrique	✓ Très bonne	⚠ Limitée en mode batterie (environ 80 à 100 km)
Émissions de CO₂	💢 Très élevées	faible émission locale si décarbonation	Réduction partielle	Faibles (notamment en milieu urbain)
Pollution atmosphérique locale	X Importante	faible localement	Réduite partiellement	✓ Très faible si hybride électrique

Analyse comparative

Critères / Modes de	Thermique (Diesel)	Électrique	Bimode	Hybride
traction				
Souplesse d'exploitation	Excellente	Limitée aux lignes électrifiées	Très bonne	✓ Très bonne
Technologie éprouvée	✓ Oui	✓ Oui	Complexe mais en usage	⚠ Encore émergente
Maintenance	✓ Maîtrisée	Moins fréquente	Plus complexe (deux systèmes)	Maintenance spécialisée requise
Impact environnemental global	X Fort	Faible (si électricité décarbonée)	<u></u> Modéré	Faible à très faible si hybride électrique
Adaptabilité pour l'Afrique / pays peu électrifiés	✓ Très adaptée	X Moins adaptée sous réserves.	Bonne option de transition	Prometteuse mais exigeante

Conclusion et recommandations

- ☐ Réseaux ferroviaires africains : vastes portions non électrifiées
- ☐ Ressources financières et énergétiques limitées
- ☐ Importance stratégique du rail pour le développement économique et social.

Traction thermique: pertinence et limites

- ☐ Atouts : simplicité, robustesse, desserte de territoires isolés
- ☐ Faiblesses : dépendance aux carburants fossiles, émissions de GES élevées, vulnérabilité au prix du pétrole

Solutions intermédiaires

- ☐ Traction bimode et hybride : options stratégiques pertinentes
- Avantages : amélioration de la performance énergétique, réduction des émissions GES
- ☐ Conciliation entre absence d'électrification généralisée et développement durable

Électrification ciblée

- Priorité aux zones à fort trafic ou à vocation métropolitaine
- ☐ Déploiement progressif, en cohérence avec les capacités financières et techniques

durable

Conclusion et recommandations

Défis énergétiques pour l'Afrique

- Besoin d'une politique énergétique nationale et africaine cohérente
 Accès universel à l'énergie et financement
- ☐ Rôle des partenariats public-privé (PPP)

Conditions de réussite

- ☐ Études approfondies pour adapter le choix de traction à chaque pays mais pensé collectif
- ☐ Prise en compte des spécificités locales (géographie, ressources, contraintes financières)
- ☐ Vision intégrée et système : transport ferroviaire + urbain (fret et voyageur)
- ☐ Le rail : levier indispensable pour l'Afrique commerçante et connectée
- ☐ Maîtrise de l'énergie = facteur décisif de performance du réseau ferroviaire et urbain
- ☐ Spécifications techniques d'interopérabilité africain
- ☐ Le rail est la réponse aux limites de la route mais en toute complémentarité

La voie du développement passe par le développement de la voie ferrée

Balg Bo Tchièn

Akpé Kaka

Crédo POCANAM

Ingénieur, expert international en systèmes de transports ferroviaires et urbains

Credopoc@gmail.com